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The dynamics of lines composed of two monatomic steps of opposite sign and periodically spaced on a
crystal surface has been investigated under electromigration. It is found that, when adatoms have a diffusion
bias parallel to the step edges, lines may become unstable with respect to shape fluctuation, which may lead to
the formation of a pattern composed of antiphase serpentinelike lines.
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The control of kinetic instabilities arising during the
growth of crystals that exhibit stepped surfaces is of funda-
mental interest in manufacturing electronic and optoelec-
tronic devices �1–8�. For instance, step bunching, step pair-
ing, and step meandering instabilities have been found to
modify the step flow growth regime of crystals. Step bunch-
ing has been investigated during molecular beam epitaxy,
pulsed laser deposition, or under electromigration �9,10�; it
results in the formation of high-density step areas separated
by large terraces. In the case of a SrRuO3 film epitaxially
grown on a vicinal SrTIO3 substrate by the pulsed laser
deposition method, the influence of deposit flux on the dif-
ferent regimes of step flow, step bunching, and island forma-
tion has been characterized and the conditions for persistent
step flow growth have been determined �7,8�. Step bunching
on Si�111� surfaces has also been observed and characterized
when an external force induced by heating with a direct elec-
tric current is applied to adatoms �11�. The step pairing in-
stability under electromigration has been investigated when
the dynamics of steps is nonlocal due to step transparency,
this effect being experimentally observed on Si�111� �6�. For
metal surfaces, electromigration-induced morphological in-
stability has also been found to play a key role in the degra-
dation of microelectronic devices and the patterning of vici-
nal surfaces �12,13�. In the case of trains of identical steps,
one interesting feature of electromigration is to allow for
meandering instabilities with nonzero phase shift between
perturbations of two consecutive steps. This instability has
been studied as a function of the external force orientation in
the linear regime �14� and more recently in the nonlinear
regime when diffusion bias is produced by an electric field
applied along the line direction �15�. The long-time coarsen-
ing dynamics was then characterized in the attachment-
detachment-limited and diffusion-limited regimes. In this
Brief Report, the effects of electromigration have been inves-
tigated on the dynamics of a set of parallel lines periodically
distributed on a crystal surface, in the case where the force
applied to the adatoms is parallel to the line direction. The
resulting morphological changes for lines were then ana-
lyzed.

A set of straight lines of width 2h, height H and spaced

out from each other by the same distance 2h is considered on
the surface of a crystal �see Fig. 1 for the axes�. Each line is
composed of two monatomic steps of opposite sign labeled
steps 1 and 2 and located at �4n−1�h and �4n+1�h, respec-
tively. The steps are assumed to be connected through the
diffusion field on terraces. An external force F= fyey is ap-
plied to the adatoms, with fy, the force magnitude along the
�0y� axis, assumed to be constant and positive. Following
Stoyanov �9�, the resulting drift velocity of adatoms is
DsF /kBT, with Ds the diffusion rate, kB the Boltzmann con-
stant, and T the absolute temperature. In the framework of
the classical Burton-Cabrera-Franck model �16�, the concen-
tration of adatoms, Cn,l, on the lth terrace of the nth line
centered at xn=4nh satisfies, in the quasistatic limit, the fol-
lowing equation �14�:

�2cn,l − f
y
*�cn,l

�x
= 0, �1�

with �2 the Laplacian, f
y
*= fy /kBT, and l=1,2 ,3. The evapo-

ration and deposition of adatoms on terraces have been ig-
nored �14�. The boundary conditions at each step of the nth
line are written as follows:

� � n · J�� = ����cn,l − ceq���, �2�

where � and � refer to the lower and upper terraces, respec-
tively, J=−Ds�cn,l+Dsfy

*cn,ley is the surface flux of ada-
toms, ceq is the equilibrium concentration at each step, n is
the unit normal vector pointing to the lower terrace, and l
=1, 2, or 3 depending at which step and on which terrace Eq.
�2� is written. For the sake of simplicity, the Ehrlich-
Schwoebel effect �17� has not been considered and the ki-
netic coefficients �� are chosen such that �+=�−=�, with � a
constant. From mass conservation, the step normal velocity
of the pth step of the nth line is written as
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FIG. 1. A periodically spaced distribution of lines is considered
on the surface of a crystal. Each line of width 2h and height H is
composed of two monatomic steps of opposite sign and labeled
steps 1 and 2.
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vn,p = �n · ��J�− − �J�+� , �3�

with p=1,2. The equilibrium concentration ceq used in Eq.
�2� has been derived from the Gibbs-Thomson relation as
follows: ceq=ceq

0 �1+���, where ceq
0 is the equilibrium con-

centration at the straight step and � the local curvature of the
considered step, taken to be positive for a convex profile.
The constant � is defined by �=	� /kBT with 	 the step
stiffness and � the atomic area of the crystal. To carry out
the linear stability analysis, a single Fourier mode of the
position of the step �p� of the nth line, 
n,p�y , t�, has been
described in Fourier space, with p=1,2. For steps 1 and 2
of the nth line, one takes 
n,1�y , t�= �4n−1�h
+e exp�+iky+ in�+��k ,� ,
�t�+c.c. and 
n,2�y , t�= �4n+1�h
+e exp�+iky+ in�+ i
+��k ,� ,
�t�+c.c., respectively, where
e is the perturbation amplitude, t the time, k the wave num-
ber along the step direction, � the growth rate of the fluctua-
tions, � the phase factor between two consecutive lines, and

 the phase shift between the two steps of each line. For
symmetry reasons, only in-phase and antiphase configura-
tions for the steps of each line are considered. In the linear
regime, one thus takes 
=0 for serpentinelike lines �SLs� and

=� for pinched lines �PLs�. Likewise, the phase shift be-
tween two consecutive lines is taken to be �=0 or �. The
general solution of Eq. �1� is cn,l�x ,y�=ceq

0 +cn,l
�1��x ,y�, with

cn,l
�1��x ,y�=exp�+iky��An,l

�1� cosh��x�+Bn,l
�1� sinh��x��+c.c. the

first-order correction in the perturbation amplitude e to the
concentration on terrace l of the nth line, with cn−1,3=cn,1,
�=�k2+ ikf

y
* and l=1,2 ,3. For each SL and PL configu-

ration, the An,l
�1� and Bn,l

�1� coefficients have been determined by
expanding Eq. �2� up to order 1 in the perturbation amplitude
e and matching first-order terms. The heavy but straightfor-
ward calculation of these coefficients is not detailed in this
Brief Report. In the case of the SL configurations, using Eq.
�3�, one gets the following growth rates:

�SL
�=��k� = ��k,� = �,
 = 0�

= 2Dsceq
0 �

�
idsfy

*k� − �k2��cosh�2h�� + ds� sinh�2h���

2ds� cosh�2h�� + �1 + ds
2�2�sinh�2h��

,

�4�

�SL
�=0�k� = ��k,� = 0,
 = 0�

= 2Dsceq
0 �

− �k2� cosh�h��
ds� cosh�h�� + sinh�h��

, �5�

with ds=Ds /� a new kinetic length scale �14�. In the case of
the PL configurations, the growth rates are given by

�PL
�=��k� = ��k,� = �,
 = ��

= 2Dsceq
0 �

�
− idsfy

*k� − �k2��cosh�2h�� + ds� sinh�2h���

2ds� cosh�2h�� + �1 + ds
2�2�sinh�2h��

,

�6�

�PL
�=0�k� = ��k,� = 0,
 = ��

= 2Dsceq
0 �

− �k2� sinh�h��
cosh�h�� + ds� sinh�h��

. �7�

The stability of SL and PL configurations has been investi-
gated considering the real part of the corresponding growth
rates. From Eqs. �5� and �7�, it can first be deduced that,
since only the smoothing term due to curvature and propor-
tional to � is present in the growth rate expressions �SL

�=0 and
�PL

�=0, the development in the linear regime of SL or PL in-
phase configurations is never favorable. From Eq. �4�, apart
from negative smoothing terms due to curvature, a new term
due to the external force and proportional to if

y
* appears. To

determine in which conditions the development of such a SL
pattern is favorable or not, the real part of the growth rate
�SL

�=� has been expanded as a function of the wave number k
in the case of small k values for which the instability is first
supposed to appear. The imaginary part of the growth rate
giving the modulation of an oscillating contribution in time
is not considered. Therefore, assuming kh�1 and also f

y
*

�k in the case of small current intensity, one gets to second
order in k

Re��SL
�=��k�� =

Dceq
0 �

3�ds + h�2 ��f
y
*�2�3ds

3h + 6ds
2h2 + 2dsh

3�

− 3��ds + h��k2 + ¯ , �8�

the higher-order term proportional to k4 in Re��SL
�=��, which

is too complicated to be written here, being negative. It can
be deduced from Eq. �8� that the development of antiphase
serpentinelike lines with small wave number k may be favor-
able under the following condition:

FIG. 2. Electromigration-induced morphological evolution of
lines on the crystal surface: formation of a pattern of antiphase
serpentinelike lines.
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�f
y
*�2

�
�

�ds + h�

ds
3h + 2ds

2h2 +
2

3
dsh

3

, �9�

with the constraints f
y
*�k and kh�1. When the attachment-

detachment kinetics is slow, ds�h, taking small values for f
y
*

and h, an analytic expression for the critical value 2hc of line
thickness above which the instability develops has been de-
termined from Eq. �9� to be

h � hc =
�

�f
y
*ds�2

. �10�

From the development of Re��PL
�=�� as a function of k, it has

been found that the term proportional to k2 is negative while
the term proportional to k4 could be positive depending on
the f

y
* value. It can then be concluded that in the early line

evolution, when sufficiently long-wavelength perturbations

are considered, a pattern composed of antiphase serpentine-
like lines as depicted in Fig. 2 may �theoretically� appear.

In conclusion, it is believed that different studies may be
considered after this linear stability analysis of the shape of
structures composed of steps of opposite sign. From the ex-
perimental point of view, it would now be a challenge to find
materials and to investigate the experimental conditions for
which these line morphological changes can be observed and
analyzed. From the theoretical point of view, it would be
relevant to investigate the morphological evolution of lines
in the nonlinear regime to determine whether or not more
complex nonsymmetric patterns than the simple ones that
have been considered in this Brief Report �with the same
perturbation amplitude e for steps� might emerge under elec-
tromigration.

It is a pleasure to acknowledge C. Misbah for fruitful
discussions.
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